Технические решения для промышленности
Закрыть
Технические решения для промышленности
Технологии

Производство изделий из инженерных пластиков. Часть 1

19 апреля 2020
Производство изделий из инженерных пластиков. Часть 1

Выбор процесса изготовления той или иной пластиковой детали часто осуществляется в соответствии с конфигурацией или дизайном продукта. Когда процесс выбран, необходимо принять несколько важных решений. В этой части мы приведем некоторую информацию, которая может оказаться полезной для инженера при принятии сложных решений, когда выбираются процессы для конструирования изделий из инженерных пластиков.

В этой главе мы будем пользоваться основами реологии, поскольку полимерные смолы — вязкотекучие вещества. Реология – это наука о течении и деформации жидкости. Понимание реологии во время технологического процесса обработки расплава термопластов имеет основополагающее значение для достижения максимального качества продукта и экономичности процесса. Вязкоупругая реология в основном наблюдается при изменении поведения расплава в зависимости от времени, температуры, давления и вязкости. На реологию смолы или компаунда влияют параметры обработки, тип оборудования и конструкция оборудования. Реология расплава, вероятно, является наиболее важным фактором при разработке полимерных систем для облегчения литья под давлением.

Краткое описание принципа сдвига суперпозиции время-температура дается с помощью декартового графика для данного вязкоупругого полимера с осью y, равной модулю Юнга (как модуль упругости при растяжении или сжатии), измеряемого в МПа, и осью x, равной времени, s. Данные построены в увеличенное время для разных температур. Температура выбирается в качестве эталонной температуры, а изотермы для других температур сдвигаются вдоль оси x (время), чтобы получить основную кривую. Основная кривая показывает динамические характеристики вязкоупругого полимера за пределами временного и частотного диапазонов обычных тестовых измерений. Чтобы рассчитать коэффициент сдвига суперпозиции время-температура, используются такие значения, как aT = коэффициент сдвига суперпозиции время-температура, η0 = вязкость с нулевой скоростью сдвига (стационарная вязкость при нулевой скорости сдвига), τtest = время релаксации для испытуемого образца, τref = время релаксации для эталонного образца, Tref = контрольная температура, К, ρref = контрольная плотность, Ttest = температура испытания, К, ρtest = плотность при испытании.

Производство изделий из инженерных пластиков. Часть 1

Чтобы рассчитать коэффициент сдвига суперпозиции время-температура, используя уравнение WLF (Уильямса-Ланделя-Ферри) для полимеров при температурах, которые на 100oC выше их Tg, используют формулы с такими параметрами, как aT = коэффициент сдвига времени-температуры, C1, C2 = постоянные WLF для отдельных полимеров, Т = указанная температура, Tref = контрольная температура. Ферри также опубликовал список констант WLF C1 и C2 при Tref = Tg (температура стеклования) в своей работе по вязкоупругим свойствам полимеров (1970 год). Уравнение WLF для aT не работает для полимеров при температурах на 100oC выше их температуры стеклования. Для этих полимеров используется формула Аррениуса. Для расчета коэффициента сдвига суперпозиции время-температура для полимеров при температурах примерно на 100oC выше их Tg используется формула Аррениуса с такими значениями, как η = вязкость, A = постоянная Аррениуса, ΔE = энергия активации для потока, Rg = газовая постоянная, Т = температура, К.

Из этого выражения высчитывается коэффициент сдвига суперпозиции время-температура aT. Другим способом вычисления коэффициента сдвига является приравнивание натурального логарифма aT (ln aT) к свободному объему ƒ, когда предполагается, что он линейно зависит от температуры. Вязкоупругое поведение можно рассматривать при помощи трех основных характеристик модуля: G * или E * = комплексный модуль, G ′ или E ′ = накопительный или динамический модуль, и G ′′ или E ′′ = потери или модуль вязкости. Модули связаны углом сдвига фаз δ при сдвиге фаз между напряжениями. Они получены на основе измерений отношения сложного модуля и фазового угла δ к напряжению путем динамического механического анализа (DMA) с использованием специальных инструментов (об этом мы уже говорили в предыдущих частях). Чтобы рассчитать модуль потерь как функцию времени, используйте такие значения, как Tref = контрольная температура, К, ρref = контрольная плотность, Ttest = температура испытания, К, и ρtest = плотность при испытании, а также модули потерь.

Производство изделий из инженерных пластиков. Часть 1

Скорость сдвига — это скорость, с которой слой расплава скользит по слою ниже. Скорость сдвига относится к неньютоновским (зависящим от сдвига) макромолекулярным полимерным расплавам и растворам. Ньютоновские жидкости, обычно небольшие молекулы, такие как H2O и масло, имеют постоянную вязкость и не зависят от скорости сдвига. Вязкость с нулевой скоростью сдвига (стационарная вязкость при нулевой скорости сдвига) зависит от типа полимера, молекулярной массы, молекулярно-массового распределения и добавок. Чтобы рассчитать увеличение вязкости при нулевой скорости сдвига с увеличением молекулярной массы, нужно учитывать такие параметры, как η0 = нулевая скорость сдвига вязкости, K = эмпирическая постоянная, а также М = молекулярная масса макрополимера.

Вязкость скорости сдвига (деформация сдвига или напряжение) является фундаментальной для регулирования реологии течения расплава. При вязкости с низкой скоростью деформации вязкость с нулевой скоростью деформации напрямую связана с вязкостью при растяжении. Влияние сдвига на вязкость соотносится с тремя фазами сдвига (ось у на графиках обозначает логарифмическую вязкость, а ось х — логарифмическую скорость сдвига). Фаза I обычно обозначает «ньютоновское плато», которое является начальной фазой, где вязкость не изменяется при увеличении скорости сдвига, фаза II соответствует закону степени сдвига, которая показывает быстрое падение вязкости при увеличении скорости сдвига, и фаза III — ньютоновское плато, которое является конечной фазой, где вязкость снова не показывает изменений с увеличением скорости сдвига. Закон Ньютона работает с низкой скоростью сдвига, а степенной закон работает с высокой скоростью сдвига.

Производство изделий из инженерных пластиков. Часть 1

Для получения более полной информации, надо обратиться к нашим специалистам по телефону
+7 (495) 268-0242, или почте info@nomitech.ru, они окажут помощь в подборе необходимого оборудования, которое будет соответствовать вашим требованиям как в части технических характеристик, так и в ценовом плане.

комментарии
Комментариев нет

Прежде, чем Вы сможете добавить свой комментарий, он будет проверен администратором.
вернуться назад